73 research outputs found

    Dual Progressive Transformations for Weakly Supervised Semantic Segmentation

    Full text link
    Weakly supervised semantic segmentation (WSSS), which aims to mine the object regions by merely using class-level labels, is a challenging task in computer vision. The current state-of-the-art CNN-based methods usually adopt Class-Activation-Maps (CAMs) to highlight the potential areas of the object, however, they may suffer from the part-activated issues. To this end, we try an early attempt to explore the global feature attention mechanism of vision transformer in WSSS task. However, since the transformer lacks the inductive bias as in CNN models, it can not boost the performance directly and may yield the over-activated problems. To tackle these drawbacks, we propose a Convolutional Neural Networks Refined Transformer (CRT) to mine a globally complete and locally accurate class activation maps in this paper. To validate the effectiveness of our proposed method, extensive experiments are conducted on PASCAL VOC 2012 and CUB-200-2011 datasets. Experimental evaluations show that our proposed CRT achieves the new state-of-the-art performance on both the weakly supervised semantic segmentation task the weakly supervised object localization task, which outperform others by a large margin

    Semantic-Constraint Matching Transformer for Weakly Supervised Object Localization

    Full text link
    Weakly supervised object localization (WSOL) strives to learn to localize objects with only image-level supervision. Due to the local receptive fields generated by convolution operations, previous CNN-based methods suffer from partial activation issues, concentrating on the object's discriminative part instead of the entire entity scope. Benefiting from the capability of the self-attention mechanism to acquire long-range feature dependencies, Vision Transformer has been recently applied to alleviate the local activation drawbacks. However, since the transformer lacks the inductive localization bias that are inherent in CNNs, it may cause a divergent activation problem resulting in an uncertain distinction between foreground and background. In this work, we proposed a novel Semantic-Constraint Matching Network (SCMN) via a transformer to converge on the divergent activation. Specifically, we first propose a local patch shuffle strategy to construct the image pairs, disrupting local patches while guaranteeing global consistency. The paired images that contain the common object in spatial are then fed into the Siamese network encoder. We further design a semantic-constraint matching module, which aims to mine the co-object part by matching the coarse class activation maps (CAMs) extracted from the pair images, thus implicitly guiding and calibrating the transformer network to alleviate the divergent activation. Extensive experimental results conducted on two challenging benchmarks, including CUB-200-2011 and ILSVRC datasets show that our method can achieve the new state-of-the-art performance and outperform the previous method by a large margin

    LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset

    Full text link
    As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2

    WMFormer++: Nested Transformer for Visible Watermark Removal via Implict Joint Learning

    Full text link
    Watermarking serves as a widely adopted approach to safeguard media copyright. In parallel, the research focus has extended to watermark removal techniques, offering an adversarial means to enhance watermark robustness and foster advancements in the watermarking field. Existing watermark removal methods mainly rely on UNet with task-specific decoder branches--one for watermark localization and the other for background image restoration. However, watermark localization and background restoration are not isolated tasks; precise watermark localization inherently implies regions necessitating restoration, and the background restoration process contributes to more accurate watermark localization. To holistically integrate information from both branches, we introduce an implicit joint learning paradigm. This empowers the network to autonomously navigate the flow of information between implicit branches through a gate mechanism. Furthermore, we employ cross-channel attention to facilitate local detail restoration and holistic structural comprehension, while harnessing nested structures to integrate multi-scale information. Extensive experiments are conducted on various challenging benchmarks to validate the effectiveness of our proposed method. The results demonstrate our approach's remarkable superiority, surpassing existing state-of-the-art methods by a large margin
    • …
    corecore